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their equivalents evaluated on the basis of the smallest resolved scales. Thi
spectrum of the solution based on this hypothesis is therefore broken down
into three bands: the largest resolved scales, the smallest resolved scales (
the test field), and the unresolved scales (see Fig. 4.14).

This statistical consistency can besinterpreted in two complementar
ways. The first uses the energy cascade idea. That is, the unresolved scal
and the smallest resolved scales have a common history due to their inte;
actions with the largest resolved scales. The classical representation of th
cascade has it that the effect of the largest resolved scales is exerted ou
smallest resolved scales, which in turn influences the subgrid scales, Whlch
are therefore indirectly forced by the largest resolved scales, but smnlarly’_
to the smallest. The second interpretation is based on the idea of cohere;
structures. These structures have a non-local frequency signature?, 4.e. they-
have a contribution on the three spectral bands considered. Scale similari
is therefore associated with the fact that certain structures appear in each of:
the three bands, inducing a strong correlation of the field among the various,
levels of decomposition.
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Extended Hypothesis. This hypothesis was generalized by Liu et al. [200]
(see [228] for a more complete discussion) to a spectrum split into an arbitrar
number of bands, as illustrated in Fig. 6.1. The scale similarity hypothesis
then re-formulated for two consecutive spectrum bands, with the consistes
forcing being associated with the low frequency band closest to those consic
ered. Thus the specific elements of the tensors constructed from the velocif;
field u™ and their analogous elements constructed from u™! are assumed to
be the same. This hypothesis has been successfully verified in experiments in
the case of a jet turbulence [200] and plane wake turbulence {258]. Liu et al.
have also demonstrated that scale similarity persists during rapid straining
(199].

_ fluctuation of the resolved scales. This model is therefore inoperative
" when the filter'is idempotent, because this fluctuation is then null.
. Tiltered Bardina model (p. 180), which is an improvement on the previous
" one. By construction, the subgrid tensor is a filtered quantity, which
results in the application of a convolution product and is therefore non-
local in the sense that it incorporates all the information contained in
the support of the filter convolution kernel. It is proposed in this model
. to cover this non-local character by applying the filter to the modeled
subgrid tensor.
' Liu—-Meneveau—Katz model (p.181), which generalizes the Bardina model
to the use of two consecutive filters of different shapes and cutoff frequen-
cies, for computing the small scale fluctuations, This model can therefore
- be used for any type of filter.
. The dynamic similarity model (p.182), which can be used to compute
the intensity of the modeled subgrid stresses by a dynamic procedure,
_ whereas in the previous cases this intensity is prescribed by hypotheses
on the form of the energy spectrum.

6.4.2 Scale Similarity Models

This section presents the structural models constructed on the basis of:the
scale similarity hypothesis. All of them make use of a frequency extrapola-
tion technique: the subgrid tensor is a approximated by an analogous tensor
computed from the highest resolved frequencies. The following are descnbed

1. Bardina’s model (p.179) in which the subgrid tensor is computed b ‘

applying the analytical filter a second tim d thereby evaluating' ; )
bpyme Y R ¥ g ardina Model. Starting with the hypothesis, Bardina, Ferziger, and

Y This is due to the fact that the variations of the velocity components associate
with a vortex cannot be represented by a monochromatic wave. For e}(aunple7

Lamb-QOseen vortex tangential velocity radial distribution is:

w=t(1-7)

where r is the distance to the center and ¢ the maximum v

ity.

the

Reynolds [13] proposed modeling the C and R terms of the Leonard de-
‘composition by a second application of the filter that was used to separate
the scales. We furthermore have the approximation:

W - (6.88)

-which allows us to say:
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The backward energy cascade is modulated by controlling the sign and’
amplitude of the product f(/ps)/Ls. The authors considered a number of
choices. The first is:

1 if hg>0
0 otherwise

fus) = (6102)

This solution makes it possible to cancel out the representation of Lhe
backward cascade completely by forcing the model to be strictly dissipativ
One drawback to this is that the function f is discontinuous, which can
generate numerical problems. A second golution that is continuous consis
in taking:

0 otherwise

. B > .
fllis) = {ILS #  hs=20 (6.103)
One last positive, continuous, upper-bounded solution is of the forin:

L (1 — exp(—IZg)) if Ls>0 o~
Sls) = { 0 otherwise - t (1)

in which v = 10.

Dynamic Similarity Model. A dynamic version of the Lin-Meneveau
Katz model (6.95) was also proposed [200] for which the constant Cy will no
longer be set arbitrarily. To compute this model, we introduce a third leve
of filtering identified by 7. The @ analogous to tensor £™ for this new level
of filtering is expressed:

;) . (6.10
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Qij = (Wil —

The Germano-Lilly dynamic procedure, based here on the difference:

My = fIg9)Qy — FLS)ILT (6.106)

where
Tgar= QuunSun , (6.107)
1Q115]
yields:
‘Cm]\’fik .
6.108
A= MM (6.108)

6.5 Mixed Modeling 183

6.4.3 A Bridge Between Scale Similarity and Approximate
Deconvolution Models. Generalized Similarity Models

T'he Bardina model can be interpreted as a particular case of the approximate

deconvolution based models described in Sect. 6.1.
Using the second order differential approximation
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the Bardina model (6.92) is strictly equivalent to the second order gradient
model given by relations (6.13) and (6.14).

It can also be derived using the iterative deconvolution procedure: a
zeroth-order truncasion in {6.27) is used to recover relation (6.88), while
ta first-order expansion is employed to derive (6.89).

The Bardina model then appears as a low-order formal expansion model
for the subgrid tensor. Generalized scale similarity models can then be de-
fined using higher-order truncations for the formal expansion [119]. They are
formulated as

(6.109)

iy = (G *xw)(Gyt ) — (Gt +3), — (Gy' +m); (6.110)

. iwhere G;lk designates the approximate deconvolution operator, defined us-
‘ ing equation (6.9) or equation (6.27).

6.5 Mixed Modeling

 6:5.1 Motivations

T'he structural models based on the scale similarity idea, and the functional
10dels, each have their advantages and dlsadvantages that make the seem

--fcomplementary

— The functional models, generally, correctly take into account the level of
_' the energy transfers between the resolved scales and the subgrid modes.
" However, their prediction of the subgrid tensor structure, i.e. its eigenvec-
_ tors, is very poor.

"The models based on the scale-similarity hypothesis or an approximate
" deconvolution procedure generally predict well the structure of the subgrid
tensor better (and then are able to capture anisotropic effects and dise-
quilibrium), but are less efficient for dealing with the level of the energy
“transfers.



